Composite microcapsules for delivery of sensitive food ingredients

M. Rosenberg, D.Sc.

Dept. of Food Sci. & Technol.

University of California, Davis

Introduction

- Mounting evidence suggesting the health promoting properties of PUFA, antioxidants, phytochemicals and vitamins calls for fortifying foods with these nutrients.
- Capabilities to deliver such ingredients through foods are compromised and limited by the extreme sensitivity of these compounds to oxidative deterioration.
- Microencapsulation is among the most promising technologies that can provide opportunities in overcoming the stated difficulties.
- However, success, in developing stable microencapsulated nutritional lipids and related compounds, for long-term storage, has been less than desired and falls short of what is needed in order to meet current challenges.

Introduction

- A need to develop new affective microencapsulating approaches exists.
 - New encapsulating agents
 - New design of microcapsules

REASERCH HYPOTHESIS

Composite spray dried microcapsules consisting of protein-coated droplets of sensitive core material embedded in wall matrices consisting of carbohydrates provide the encapsulated core with long-term, oxidative stability.

Hypothesis Model of Microcapsules

Specific Objectives

- ➤ To investigate the effects of core load, type and load of protein and carbohydrate and of emulsification variables on the formation and properties of Soy- and Zein-stabilized CIWE.
- ➤ To investigate the influence of wall composition and physicochemical properties of the CIWE on the formation composition, microstructure, and functionality of spray-dried microcapsules prepared from these CIWE
- ▶ Based on results of objectives 1 & 2, to investigate the role of: type and of protein surface excess, core load, and of wall composition and structure in governing the oxidative stability of the encapsulated core.

Microencapsulating properties of soy proteins

Mean particle size in CIWE

Surface Excess

08/07/2007

M. Rosenberg, UCD

Core Retention

08/07/2007

M. Rosenberg, UCD

Microencapsulation efficiency (MEE)

5% SPI, 15% MDE24, 25% OIL

2.5% SPI, 17.5% MDE7.5, 60% oil

5% SPI, 15% MDE17.5, 50%OIL

5% SPI, 15% MDE17.5, 50%OIL

Zein as microencapsulating agent

- Prolamin
 - > Solubility
 - > Alcohol, extreme pH
- > Functionality
 - Film forming
 - Drying properties
 - Oxygen barrier properties of films
- Encapsulation with EtOH solution very limited success
- Aqueous solutions
 - Deamidation at alkaline conditions
 - Extent of deamidation
 - Extent of hydrolysis
 - > Solubility
 - Surface activity

Effect of deamidation conditions on DD:

19

Effect of deamidation conditions on DD:

Effect of deamidation conditions on DH:

Effect of deamidation conditions on DH:

22

PSD of zein-stabilized emulsion containing 10% w/w oil. De-amidation conditions: 0.25N NaOH, 15hr. at 30°C, final pH=7.0.

d₃₂ in treated-zein-stabilized CIWE

	Emulsion		Compos				
I		BE	BE after 24hr @ 4C	FE, DE 7.5	FE, DE 18	DD*	DH %
	1%zein 10%oil	0.54	0.51	0.63	0.62	0.0087	24.2
	2%zein 10%oil	0.39	0.40	0.42	0.39	0.0076	19.0
	4%zein 10%oil	0.37	0.38	0.45	0.38	0.0065	14.6
	4%zein 20%oil	0.41	0.45	0.61	0.47	0.0065	14.6

^{*}DD – mg NH3/mg protein

Surface Excess

Effect of deamidation on surface excess. CIWE: protein – 4%; oil – 20%

Incubation time	SE (mg proteins/m²)	DD*	DH (%)
15hr	2.43	0.0063	14.2
24hr	1.75	0.0091	16.7
34hr	1.21	0.0122	18.1
48hr	0.74	0.0158	20.5

^{*}DD - mg NH3/mg protein

08/07/2007

Effect of DE value of outer topography.

Zein microcapsules (dry basis):

A = 12.5% zein, B = 12.5% zein,

25% oil, 25% oil,

62.5% DE 7.5. 62.5% DE 18

Drying conditions:

Ti = 160°C, To = 80°C.

Microencapsulation Efficiency

Powder		MEE			DD(mg ammonia	DII 0/	
Capsules	DE value	2.5 min	5min	15min	/mg protein)	DH %	
4%/50:50	7.5	32.4 A b	33.1 A b	26.5 B b	0.0063 b	14.2 b	
4%/50:50	18	53.4 ^{A a}	54.3 ^{A a}	48.8 ^{B a}	0.0005~		
4%/75:25	7.5	86.8 A b	85.3 B b	75.3 ^{C b}	0.0065 b	14.1 ^b	
4%/75:25	18	88.2 A a	86.0 ^B a	86.0 ^{B a}	0.0005 ~		
2%/75:25	7.5	87.9 A a	87.7 A a	82.3 ^{B b}	0.00743	19.0 a	
2%/75:25	18	87.2 A b	87.7 A a	84.9 ^{B a}	0.0074 ^a		

CONCLUSIONS

- SPI and zein can serve as functional microencapsulating agents for lipids encapsulation.
- Utilization of zein requires a controlled deamidation stage.
- Treated zein is effective in forming and stabilizing CIWE.
- ➤ Treated zein provides, for the first time ever, means to prepare microcapsules in an all aqueous environment
- ➤ SPI and treated zein can be utilized for preparing composite microcapsules consisting of protein-coated oil droplets embedded in MD-based wall.
- Deamidation conditions affect surface excess.
- Type of MD affects MEE
- Surface excess obtained with SPI is lower than that obtained with treated zein.